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We characterize the Besov regularity of functions on Lipschitz domains by means
of their error of approximation by certain sequences of operators. As an applica-
tion, we consider wavelet decompositions and we characterize Besov quasi-norms
in terms of weighted sequence norms. � 1998 Academic Press

1. INTRODUCTION

The theory of wavelets and multiresolution analysis is usually developed
on Rd. However, applications of wavelets to image processing and numeri-
cal methods for partial differential equations require multiresolution
analysis on domains or manifolds in Rd. The study of multiresolution in
these settings is just beginning. Building on the construction of multiresolu-
tion on intervals (and cubes in Rd ), Cohen et al. [2] have constructed a
multiresolution which applies to a fairly large class of domains 0 (basically
coordinatewise Lipschitz) in Rd. They have shown in their analysis that
various smoothness spaces can be characterized by this multiresolution.
For example, their analysis applies to the Besov spaces B:

q((Lp)(0)
provided p�1. However, the same Besov spaces with p<1 are also impor-
tant in analysis, especially in analyzing nonlinear methods [5] such as
image compression [4] or noise removal [10].

The purpose of the present paper is to show that the Besov spaces
for p<1 can also be characterized in the usual way by multiresolution
analysis. To prove this, we analyze the approximation properties of certain
sequences of operators Tj , j # N, which include as a special case the projec-
tors in the Cohen et al. multiresolution. The operators take the form

(1.1) Tj f := :
# # Gj

( f, 8� #) Rd 8# , j # N,
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where 8# , 8� # , # # Gj , are compactly supported functions and Gj is a subset
of Lj :=2& j Zd, j # Zd.

A special case of our results is the characterization of the Besov spaces
B:

q(Lp(0)) for 0< p�1, 0<q��, and :>d(1�p&1), on the class of
domains considered in [2]. The restrictions on the parameters in the Besov
space imply that this Besov space is embedded in L1 . For 0=Rd this kind
of problem has been already addressed in various settings in [1, 6, 11,
12, 13].

Throughout this paper, we shall use standard multivariate notation; for
every x=(x1 , ..., xd ) # Rd and :=(:1 , ..., :d ) # Nd, we define x: :=x:1

1 } } } x:d
d ,

|:| :=:1+ } } } +:d and D: :=�|:|�(�:1 x1 } } } �:dxd ).
Let 0 be a bounded, open subset of Rd. As usual for any function

f # Lp(0) and r # N we denote by |r( f, t)p , t>0, its r th modulus of
smoothness

(1.2) |r( f, t)p :=|r( f, t, 0)p := sup
|h|�t

&2r
h( f, } , 0)&Lp(0) ,

where 2r
h( f, } , 0) is the r th forward difference relative to 0 which is defined

by

2r
h( f, x, 0) :={2r

h( f, x),
0,

x, x+h, ..., x+rh # 0,
otherwise.

Let now s>0, 0< p, q��, and assume that r is an integer greater
than s. The Besov space Bs

q(Lp(0)) is defined to be the collection of all
functions f in Lp(0) such that the (quasi-) norm

(1.3) & f &B s
q (Lp(0)) :=& f &Lp(0)+\ :

�

k=1

[2ks|r( f, 2&k, 0)p]q+
1�q

is finite (where the summation is replaced by a supremum when q=�).
It is easily seen that the sum in (1.3) defines a semi- (quasi-) norm which

we denote by | } |Bs
q (Lp(0)) ; we further define

(1.4) & f &Bs
q (Lp(0))=: & f &Lp(0)+| f |B s

q (Lp(0)) .

It is also known that different values of r>s yield equivalent norms.
Finally by ArB we mean that there exist positive constants, indepen-

dent of the variables involved, such that const�A�B�const.
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2. CHARACTERIZATION OF BESOV SPACES
BY MEANS OF Tj , j # N

In the present section we intend to establish, under certain assumptions
on the operators Tj , j # N, that for every 0< p�1, 0<q��, :>
d(1�p&1), the following three quantities are equivalent quasi-norms on
B:

q(Lp(0)):

(i) & f &q
B :

q (Lp(0)) ,

(2.1) (ii) :
j�&1

2 j:q & f &Tj f &q
Lp(0) ,

(iii) :
j�0

2 j:q &Tj f &Tj&1 f &q
Lp(0) ,

with constants of equivalency possibly depending on :, p, q, and d. We use
here and later the convention that T&1 :=0.

We are going to impose two types of assumptions on the operators Tj ;
the first is pertinent to the establishment of direct theorems, referred to as
Jackson inequalities, while the second type is suitable for the proof of
inverse theorems, usually associated with the name of Bernstein, who estab-
lished analogous results for polynomials.

Direct Theorems

We begin by considering first the case when 0=Rd. We assume that we
have in hand a sequence of linear operators Lj , j # N, given by

(2.2) Lj f := :
# # 1j

( f, 8� #) R d 8# ,

where 1j/2& j Zd and for each # # 1j , the functions 8# , 8� # satisfy the
following two properties:

(J1) There exist absolute constants such that:

|diam(supp(8#))|�const 2& j, |diam(supp(8� #))|�const 2& j.

(J2) There exists an absolute constant such that for each + # (0, �],

&8#&L+(R d )�const 2 jd(1�2&1�+), &8� #&L+(Rd )�const 2 jd(1�2&1�+).

Note. The case of general + follows from the case +=� in this con-
dition while (J1)�(J2) together guarantee that Lj , j # N, are defined on
L1(loc).

The reader should keep in mind the biorthogonal wavelets as typical
candidates for the functions 8# and 8� # ; however, there are several other
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important examples in which we shall also be interested. We also need to
make a further assumption regarding the approximation properties of the
sequence Lj , j # N:

(J3) There is an integer N�0 such that for each j # N, and every
polynomial P # 6N , we have

(2.3) Lj (P, x)=P(x), x # Rd.

Note that the larger the integer N is then the larger the polynomial
reproduction and the better the approximation properties of the Lj , j # N.

We are ready now to state our first theorem:

Theorem 2.4. Let 0< p�1, :>0, and N # N be such that N+1>:�
d(1�p&1). If Lj , j # N, are defined by (2.2) and satisfy conditions (J1)�(J3)
above, then for every f # B:

p(Lp(Rd ))

(2.5) & f&Lj ( f )&Lp(Rd )�const 2& j: | f | B :
p (Lp(R d )) , j=1, 2, ...,

for some constant independent of f and j.

Although Theorem 2.4 is important by itself, here we will use it primarily
as a vehicle for establishing Jackson's inequality for sequences of operators
defined on domains in Rd. We shall limit our development to minimally
smooth domains in the sense of Stein (see [14] for their definition and
properties). In this setting, we let Tj , j # N, be a sequence of linear
operators of the form (1.1). We shall assume that:

(J4) For each # # Gj , supp 8� #/0.

(J5) For each j # N, there exists an extension 1j of the set Gj (Gj/
1j/2& j Zd ) such that the (extension) operator

(2.6) Ej f := :
# # 1j

( f, 8� #) Rd 8#

satisfies

Ej ( f )(x)=Tj ( f )(x), x # 0.

Theorem 2.7. Let (Tj)j # N be a sequence of linear operators of the form
(1.1) and let 0 be a minimally smooth domain. Let also 0< p�1, :>0, and
N # N be such that N+1>:�d(1�p&1). If (Tj) j # N satisfy assumptions
(J4)�(J5) and the extension operators Ej , j # N, satisfy (J1)�(J3) then, for
every f # B:

p(Lp(0))

(2.8) & f &Tj ( f )&Lp(0)�const 2& j: & f &B :
p (Lp(0)) , j=1, 2, ...,

for some constant independent of f and j.
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We start by establishing first the proof of Theorem 2.4. For this we will
take advantage of the local approximation properties of polynomials. We
denote by Dj the set of dyadic cubes in Rd with sidelength 2& j. If Q # D j ,
we denote by 4Q the set of all indices # # 2& j Zd such that the support of
8# intersects Q. We note for further use that

(2.9) *4Q�const.

We also let Q� be the smallest cube containing (�# # 4Q
supp 8� #) _ Q. Then,

(J1) guarantees that |Q� |�const 2& jd.
For ; :=d(1�p&1) and N+1>;, it is well known (see [8]) that any

polynomial P # 6N of best Lp(Q� ) approximation to f satisfies the local
estimate

(2.10) & f&P&L1(Q� )�const | f |Bp
; (Lp(Q� )) .

Using (2.10) we will prove the following lemma:

Lemma 2.11. Let 0< p�1 and ; :=d(1�p&1). There exists a constant
such that for every f # B ;

p (Lp(Q� )), Q # Dj ,

(2.12) & f &Lj ( f )&Lp(Q)�const 2& j; | f |B p
;(Lp(Q� )) , j=1, 2, ... .

Proof. Let P be a polynomial in 6N satisfying (2.10). We have

(2.13) & f&Lj ( f )& p
Lp(Q)�& f&P& p

Lp(Q)+&Lj ( f )&P& p
Lp(Q) .

From Ho� lder's inequality and (2.9), we have that

(2.14) & f&P& p
Lp(Q)�\|Q�

| f&P|+
p

|Q� | 1& p

�const 2& jd(1& p) | f | p
B p

; (Lp(Q� )) .

On the other hand, employing the polynomial-reproduction of Lj , it
follows that

&Lj ( f )&P& p
Lp(Q)=&Lj ( f &P)& p

Lp(Q) .

Moreover, on Q we have with the help of (J2) that

|Lj ( f&P)( } )| p� :
# # 4Q

\|Q�
| f&P| |8� #|+

p

|8#( } )| p

�const 2 jdp�2 \|Q�
| f&P|+

p

:
# # 4Q

|8#( } )| p.
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Integrating the last inequality, and taking into account (2.10) and (J2), we
get that

(2.15) &Lj ( f&P)& p
Lp(Q)�const 2& jd(1& p) \|Q�

| f&P|+
p

�const 2& jd(1& p) | f | p
Bp

; (Lp(Q� )) .

Employing (2.14) and (2.15) in (2.13) the result follows. K

Lemma 2.16. Let :>; :=d(1�p&1). For each cube Q and N>:&1,
there exists a polynomial P :=PQ of degree �N such that

(2.17) | f &P|Bp
; (Lp(Q))�const |Q| (:&;)�d | f | B:

p (Lp(Q)) .

Proof. Without loss of generality we assume that Q=[0, 1]d; otherwise
the result follows by dilation and translation.

Let Sk( f ), k # N, be a best approximation to f from the space of smooth
dyadic splines of coordinate degree N on the partition 2&k Zd & [0, 1]d. It
is well known (see [8]) that for every #<N+1 and 0<q�� there exist
constants such that

| f | q
B q

#(Lp([0, 1]d ))r :
k�0

2k#q &Sk+1( f )&Sk( f )&q
Lp([0, 1]d ) .

Moreover, the proof of Theorem 4.8 in [8] shows that

| f &S0( f )| q
B q

;(Lp([0, 1]d))�const :
k�0

2k;q &Sk+1( f )&Sk( f )&q
Lp([0, 1]d )

�const :
k�0

2k:q &Sk+1( f )&Sk( f )&q
Lp([0, 1]d )

�const | f | q
B q

:(Lp([0, 1]d )) .

Since S0( f ) is just a polynomial of coordinate degree �N on [0, 1]d, we
arrive at (2.17) for Q=[0, 1]d. K

We are ready now to prove the two theorems of this section:

Proof of Theorem 2.4. We let Q # Dj and we assume that P # 6N

satisfies (2.17) with respect to Q. Since Lj (P)=P, (2.12) combined with
(2.17) gives that

(2.18) & f &Lj ( f )& p
Lp(Q)=& f &P&Lj ( f &P)& p

Lp(Q)

�const 2& j;p | f &P| p
B p

;(Lp(Q� ))

�const 2& j:p | f | p
B p

:(Lp(Q� )) .
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Noting that any point x # Rd lies in at most a constant number (inde-
pendent of j ) of cubes Q� we can add the estimates in (2.18) over all disjoint
Q 's and get the desired result from the subadditivity of | f | p

B p
:(Lp(Q� )) .

Proof of Theorem 2.7. Let f # B:
p(Lp(0)). The smoothness of the bound-

ary of 0 guarantees (see [9]) the existence of an extension f� of f to Rd with
f� |0= f and

(2.19) & f� &B p
:(Lp(R d ))�const & f &Bp

:(Lp(0)) .

Since for every j # N, Ej f� =Tj f on 0 it follows from (J4) and Theorem
2.4 (with Ej instead of Lj , j # N) that

(2.20) & f &Tj f &Lp(0)=& f� &Ej f� &Lp(0)

�& f� &Ej f� &Lp(Rd )

�const 2& j: & f� &B p
:(Lp(Rd )) .

From (2.19) and (2.20) we conclude that

(2.21) & f &Tj f &Lp(0)�const 2& j: & f &B p
:(Lp(0)) .

Inverse Theorems

Next, we turn our attention to the establishment of Bernstein type
inequalities. Let again Tj , j # N, be the family of linear operators defined
on the domain 0 by

Tj f := :
# # Gj

( f, 8� #) Rd 8# , j # N.

Our main assumptions on the operators [Tj ] are the following:

(B1) The family of functions [8# : # # Gj ] is uniformly Lp-stable; i.e.,
there exist positive constants independent of j such that for every sequence
of complex numbers b :=(b(#))# # Gj

(2.22) &b&lp(Gj )
r2 jd(1�p&1�2) " :

# # Gj

b(#) 8#"Lp(0)

.

(B2) For each j # N there are complex numbers b(#), # # Gj+1 , such
that

Tj+1( f )&Tj ( f )= :
# # Gj+1

b(#) 8# .
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(B3) For every # # Gj and j # N,

(2.23) |r(8# , t)p�const 2 jd(1�2&1�p) min[1, (2 jt)r],

for some constant independent of j.

These assumptions are natural in the setting of a multiresolution
analysis. Condition (B2) is related to the nesting of the spaces Vj (0)/
Vj+1(0), j # N. Condition (B3) imposes, roughly speaking, smoothness of
order r on the functions 8# ; for instance if 8#( } ) :=2 jd�2,(2 j } &k), k # Zd,
with , a compactly supported function in Cr(Rd), it is easily seen that

(2.24) |r(8# , t)p�const 2 jd (1�2&1�p)|r(,, 2 jt)p

�const 2 jd (1�2&1�p) min[1, (2 jt)r].

Theorem 2.25. Let (Tj), j # N, be a sequence of operators defined as in
(1.1). We assume that the family 8# , # # Gj , j # N, satisfies (B1�B3) above.
Then for every f # Lp(0), k # N, and 0<+� p�1,

(2.26) |r( f, 2&k)+
p�const 2&kr+ :

k

j=&1

2 jr+ & f &Tj ( f )&+
Lp(0) ,

where T&1 :=0.

Proof. Using the telescoping summation

f = f &Tk( f )+ :
k

j=0

Tj ( f )&Tj&1( f ),

we have

(2.27) 2r
h( f, x)=2r

h( f &Tk( f ), x)+ :
k

j=0

2r
h(tj ( f ), x),

where tj ( f ) :=Tj ( f )&Tj&1( f ). It follows that

(2.28) &2r
h( f, x)& p

p(0)�const & f &Tk( f )& p
Lp(0)

+ :
k

j=0

&2r
h(tj ( f ), x)& p

p (0).

Let b(#), # # Gj+1 , be the numbers appearing in the representation (B2).
Then,

&2r
h(tj ( f ), x)& p

p (0)� :
# # Gj+1

|b(#)| p &2r
h(8# , x)& p

p (Rd).
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Taking, on both sides, a supremum over |h|�t and using (B1), (B3) we get

(2.29) |r(tj ( f ), t) p
p � :

# # Gj+1

|b(#)| p |r(8# , t) p
p

�const min[1, (2 jt)rp] &tj ( f )& p
Lp(0) .

Taking a supremum over |h|�2&k in (2.28) and using this in (2.29), we
conclude that for every k # N and 0<+� p�1

|r( f, 2&k)p�const \& f &Tk ( f )& p
Lp(0)+ :

k

j=0

|r(tj ( f ), 2&k) p
p +

1�p

�const \& f &Tk( f )& p
Lp(0)+ :

k

j=0

2 jrp2&krp &tj ( f )& p
Lp(0)+

1�p

�const 2&kr \ :
k

j=&1

2 jrp & f &Tj ( f )& p
Lp (0)+

1�p

�const 2&kr\ :
k

j=&1

2 jr+ & f &Tj ( f )& +
Lp(0) +

1�+

. K

Having established Theorems 2.7 and 2.25 we are ready to prove the
equivalence of the semi-norms in (2.1). For this we need to assume that
family Tj , j # N, satisfies the assumptions of both theorems.

Theorem 2.30. Let 0 be a minimally smooth domain and assume that
0< p�1, :>d (1�p&1), and 0<q��. If the family of operators Tj , j # N,
satisfies conditions (J1)�(J5) of Theorem 2.7 and (B1)�(B3) of Theorem 2.25
with min[N+1, r]>:, then the following quasi-norms are equivalent:

(i) & f &q
Bq

:(Lp(0)) ,

(ii) :
j�&1

2 j:q & f&Tj f &q
Lp (0) ,

(iii) :
j�0

2 j:q &Tj f &Tj&1 f &q
Lp(0) ,

where the constants of equivalency are independent of f # B:
q(Lp(0)).

Proof. The equivalence of (i) and (ii) follows from Jackson's (2.12) and
Bernstein's (2.26) inequalities. Since the arguments involved are well
known we refer the reader to [7] for details. As far as the equivalence of
(ii) and (iii) is concerned, one direction follows from &Tj f &Tj&1 f &Lp

�
const[&Tj f &f &Lp

+&Tj&1 f &f &Lp
] and the other from the so-called

Hardy's inequality (see [8] for details). K
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3. WAVELET-DECOMPOSITIONS ON SMOOTH DOMAINS

We assume that the reader is familiar with the theory of orthogonal
wavelets and briefly review the construction of biorthogonal wavelet-bases
on bounded domains of Rd as it was proposed in [2]. As is customary, in
what follows for any function f defined on Rd we use the notation
fj, k( } ) :=2 jd�2f (2 j } &k).

The term biorthogonal wavelets refers to a pair of functions �, �� in L2(R)
that satisfy the duality principle

(3.1) |
R

�(x) �� (x&k) dx=$0, k , k # Z,

and whose dilated translates [�j, k]( j, k) # Z_Z constitute a Riesz basis for
L2(R). Then, [�� j, k] ( j, k) # Z_Z is the dual basis.

In other words every function f # L2(R) enjoys the unique decomposition

(3.2) f = :
j, k # Z

cj, k( f ) �j, k , cj, k :=|
R

f ( y) �� j, k( y) dy,

and for some constants independent of f

const :
j, k # Z

|cj, k | 2�& f &2
L2

�const :
j, k # Z

|cj, k | 2.

The original construction of biorthogonal wavelets on R, given in [3],
is built on two functions ., .~ # L2(R) satisfying

(3.3) |
R

.(x) .~ (x&k) dx=$0, k , k # Z.

It is also required that both ., .~ satisfy the refinement equations

(3.4) .(x)=- 2 :
k # Z

hk.(2x&k), .~ (x)=- 2 :
k # Z

h� k .~ (2x&k),

(for some sequences of complex numbers (hk) and (h� k), respectively) and
that their integer translates (shifts) form stable systems.

The functions ,, ,� are then used to construct a dual multiresolution
system consisting of two ascending sequences of subspaces (Vj), (V� j), j # Z,
of L2(R). Both sequences are generated from the 2& jZ-shifts of the func-
tions .j, 0 :=2 j�2.(2 jx) and .~ j, 0 :=2 j�2.~ (2 jx), respectively: thus,

(3.5) Vj/Vj+1 , V� j/V� j+1 , j # Z,
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and

Vj :=span[.j, k], j # Z, V� j :=span[.~ j, k], j # Z.

We further assume that ., .~ are compactly supported functions whose
Fourier transform does not vanish at the origin, i.e., ,� (0), ,�� (0){0; these
assumptions guarantee that

(3.6) ,
j # Z

Vj=[0], and .
j # Z

Vj =L2(R).

Starting with such a biorthogonal multiresolution ladder, wavelet
analysis constructs a certain (oblique) complementing subspace Wj of Vj

in Vj+1 , Vj+1=Vj+Wj , with Wj generated by the wavelet function � and
its dual space W� j generated by �� . One then has the decomposition

L2(R)= :
j # Z

Wj ,

from which one derives (3.2).
Turning our attention to the multivariate case, we can obtain biortho-

gonal wavelet bases by means of tensor products. For x :=(x1 , ..., xd) we
define

,(x) :=.(x1) } } } .(xd), ,� (x) :=.~ (x1) } } } .~ (xd),

where . and .~ are the functions defined above. It is trivially seen that ,
and ,� satisfy the refinement equations (3.4) with certain coefficients ak , a~ k ,
respectively (for instance ak :=hk1

} } } hkd , k :=(k1 , ..., kd)). Moreover, the
sequences

Vj :=span[,j, k], j # Z, V� j :=span[,� j, k], j # Z,

both form multiresolution ladders for L2(R
d ).

To describe the corresponding tensor-product wavelets we set '0 :=.,
'1 :=�, and we let E be the set of nonzero vertices of the unit cube [0, 1]d.
A family of 2d&1 wavelets is then given by

9e(x) := `
d

j=1

'ej
(xj), e=(e1 , ..., ed) # E.

In a similar manner, one defines the dual functions 9� e, e # E.
The family [9 e

j, k]e, j, k is a Riesz basis for L2(R
d) and in analogy to (3.2)

for every f # L2(Rd), we have

(3.7) f = :
e # E

:
j # Z, k # Z d

cj, k, e( f ) 9 e
j, k , cj, k, e :=|

Rd
f ( y) 9� e

j, k( y) dy.
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In several applications of multiscale analysis such as in image processing
and the numerical solutions of PDEs one needs a corresponding theory
relative to bounded domains, that preserves all the important features of
wavelets; in particular, when nonlinear methods are used in data compres-
sion (see [5]) it is of paramount importance to reflect the smoothness of
functions in the Besov spaces Br

q(Lp (0)) in their wavelet coefficients.
However, to achieve this we need some additional conditions on the func-
tions , and ,� mostly taken from [2]. We list these properties below and
we assume that they hold for the rest of the paper.

(P1) ,(0){0 and there exists an integer L>0 such that,

supp(,), supp(,� )/[&L, L]d.

(P2) , satisfies the Strang�Fix conditions of order N+1, i.e.,

,� (2?k)=0, k # Zd"[0], n=0, ..., N.

(P3) Both , and ,� satisfy

,� (0)=1, ,�� (0)=1,

while for 1�|;|<N+1,

D ;,� � (0)=D ;,� (0)=0.

(P4) For some r>:, , # Cr(Rd).

(P5) The shifts (integer translates) of , are locally linearly inde-
pendent; that is, for any cube Q/Rd the family of functions

[,( }& j ): j # Zd, and ,( }& j ) is not identically zero on Q]

is linearly independent over Q.

We are ready now to describe the construction of a multiresolution
analysis on bounded domains as it was proposed in [2]. In that paper,
they have constructed a ladder of spaces Vj (0), j=1, ..., which retains the
important properties of multiresolution.

Let 0 be a fixed bounded domain. For each j # N, we define the sets

0j :=[2& jk: k # Zd, 0 & 2& j (k+[&L, L]d){<].

Since the support of , is contained in the cube [&L, L]d, it is obvious that
if 2& jk � 0j then supp ,(2 j }&k) & 0=<. Therefore we need only consider
k, j 's with 2& jk # 0j , j # N.
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To simplify our notation, for each lattice point #=2& jk of 0j , we write
,# instead of 2 jd�2,(2 j }&k). However, since a lattice point may belong to
different 0j 's we will always correlate ,# with a specific dyadic level j which
we make clear in all instances.

The construction of Vj (0), j # N, proceeds by partitioning 0j into a
family Cj of disjoint subsets (cells) C of 0j . In other words, each Cj consists
of a collection of disjoint (cells) C/0j such that �C # Cj

=0j .
Of course, not all bounded domains 0 will admit a multiresolution

analysis Vj (0), j # N. The admissibility of 0 depends foremost on the
properties of the cells C in Cj . We will briefly recall the notation of [2] and
describe the properties imposed on the cells in [2] that guarantee the exist-
ence of Vj (0), j # N. For the reader who will find the ensuing notation
rather cumbersome, we want only to mention that any bounded simply
connected domain 0 in R2 whose boundary can be partitioned into coor-
dinate wise Lip 1 curves and satisfies (along with 0c) the uniform cone
property admits such a multiresolution as was proved in [2].

We assume that each Cj can be partitioned into subcollections Cj (I, _)
where I/[1, ..., d ] and _=(_i) i # I/[&1, 1] |I |, i.e.,

Cj=.
I, _

Cj (I, _),

where,

Cj (I, _) & Cj (I$, _$ )=<, for (I, _){(I$, _$).

Moreover, each cell C # Cj (I, _) is of the form

C=k+D(k),

with k # 0j a lattice point (called the representer of C ) and

D(k)/span[ei : i # I ] & 2& jZd

with ei , i=1, ..., d, the coordinate vectors in Rd. It is further required that
dist(k, �0)�const 2& j, where the constant does not depend on j, whenever
I{< and that 0 # D(k).

For each cell C and its representer k, we define

G(C ) :=k+2& jT_4 , 4 :=[:=(:1 , ..., :d) # Zd, 0�:i�N, 1�i�d ],

where for a sequence _ # [&1, 1] |I | the transformation T_ is defined on Rd

by

T_ \ :
d

i=1

*iei+ := :
i # I

_i*iei .
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In other words G(C ) consists of a square array of (N+1)|I | lattice points
emanating from k and expanded in the direction defined by I and _.

Also, for a set K=[k1 , ..., km]/[1, ..., d ] with k1<k2< } } } <km , and
a point x # Rd, we define xK to be the point whose coordinates are those
of x corresponding to the indices of K, i.e., xK :=(xk1

, ..., xkm
). Accordingly,

we denote by 6N(I ) the space of all polynomials P(xI) of coordinate
degree N. If C # Cj (I, _) is a cell in Cj , we let 4(C ) be the set of all : # 4
for which :j=0, j # [1, ..., d ]"I.

Further assumptions have to be made on the cells in order to ensure that
the representer of each cell is located well inside the domain 0, and to
guarantee the nestedness of the sequence Vj (0), j # N, and the existence of
a biorthogonal dual basis whose support is sufficiently small. We are not
going to describe these additional assumptions (although we impose them)
since they are amply reported on in [2].

We are ready now to describe a biorthogonal basis for Vj (0), j # N. We
let P& , & # G(C ), denote the Lagrange polynomials in 6N(I ) which are
defined by the interpolation conditions

(3.8) P&(#)=$&, # , #, & # G(C ).

It is apparent that the polynomials P& , & # G(C ), form a basis for 6N(I ).
For each & # G(C ), we define

8& := :
# # C

P&(#) ,# , & # G(C).

A basis for Vj (0) is given by the set of all functions

8& , & # Gj := .
C # Cj

G(C ).

As was proved in [2, Proposition 3.3], the functions 8� # defined by

8� # : =,� # , # # Gj ,

constitute a dual system to 8# , # # Gj , i.e.,

(8# , 8� #$) 0 :=|
0

8#( x) 8� $#(x) dx=$#, #$ , #, #$ # Gj .

For each j # N, Vj (0) is defined as the linear span of the functions 8# ,
# # Gj , and we have

Vj (0)/Vj+1(0) and .
j # N

Vj (0)=L2(0).
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For j # N we define on L1(0) the operators

(3.9) Qj f := :
# # Gj

( f, 8� #) 0 8# .

It is easily seen that Qj , j # N, are uniformly bounded projectors from
Lp(0), 1� p��, onto Vj (0) (see [2]). We intend to characterize Besov
spaces on 0 in terms of the errors of approximation induced by Qj , j # N.

4. CHARACTERIZATIONS OF BESOV SPACES BY
THE PROJECTORS Qj , j # N.

Our goal in this section is to derive an analogue of Theorem 2.30 for the
operators Qj , j # N, on a domain 0 that admits a multiresolution analysis
Vj (0), j # N, as described in the previous section. In particular, we will
prove the following theorem:

Theorem 4.1. Let 0 be a minimally smooth bounded domain which
admits a multiresolution analysis as described in Section 3. Let also
0< p�1, :>d (1�p&1), 0<q��, and N # N with N+1>:. If , satisfies
properties (P1)�(P5), then the following quasi-norms are equivalent:

(i) & f &q
Bq

: (Lp(0)) ,

(4.2) (ii) :
j�&1

2 j:q & f&Qj f &q
Lp (0) ,

(iii) :
j�0

2 j:q &Qj f&Qj&1 f &q
Lp (0) ,

with constants of equivalency independent of f # B:
q(Lp(0)).

Following verbatim the proof of Theorem 2.30 we need to establish a
Jackson type and a Bernstein type inequality. In other words it is sufficient
to prove the following theorems:

Theorem 4.3. Let 0 be a minimally smooth bounded domain which
admits a multiresolution analysis as described in Section 3. Assume that ,
satisfies assumptions (P1)�(P3) and let (Qj) j # N be the sequence of operators
defined by (3.9). If 0< p�1, and : # R satisfies N+1>:�d (1�p&1), then
there exists a constant such that for every f # B:

p(Lp(0))

(4.4) & f &Qj f &Lp(0)�const 2& j: & f &Bp
: (Lp(0)) , j=1, 2, ... .
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Theorem 4.5. Let (Qj) j # N be the sequence of operators defined by (3.9)
and assume that , satisfies assumptions (P1), (P4), (P5). Then, for every
f # Lp(0), k # N, and 0<+� p�1,

(4.6) |r( f, 2&k)+
p�const 2&kr+ :

k

j=&1

2 jr+ & f&Qj ( f )&+
Lp (0) ,

where Q&1 :=0.

Proof of Theorem 4.3. For the proof of the theorem we need only to
verify that the operators Qj , j # N, satisfy the assumptions of Theorem 2.7.
That is, we need to show that for every j # N, there are extension operators
Ej of Qj on Rd such that assumptions (J1)�(J5) are satisfied.

Let j # N, and f # L1(Rd). We define the extension operators Ej on L1(Rd)
by

(4.7) Ej f := :
# # L0j

( f, 8� #) Rd 8# ,

where

L0j
:=Gj _ (Lj"0j ),

and

8# :={,# ,
8# ,

# # Lj"0j

# # Gj ,
8� # :={,� # ,

8� # ,
# # Lj "0j

# # Gj .

It is trivially seen that the operators Qj , j # N, satisfy (J4), (J5), with
their extension operators Ej , j # N, as above satisfying (J1), (J2). Thus, we
have only to establish that the Ej 's satisfy (J3); that is, for every j # N,

(4.8) EjP=P, P # 6N .

Since Ej is linear, it is sufficient to prove (4.8) for polynomials P # 6N of
the form P(x1 , ..., xd) :=P1(x1) } } } Pd (xd) where the Pi 's are univariate
polynomials. From assumptions (P1)�(P3) of Section 3, it follows that

P= :
# # Lj

(P, ,� #) ,# ,

and that (P, ,� #)=2& jd�2P(#), # # Lj .
We recall that for every C # Cj , say C # Cj (I, _), there exists a basis

[PC, & , & # G(C )] for 6N(I ) (the space of all polynomials of coordinate
degree N in the coordinate directions of I ), defined by (3.8) (we have
slightly changed our notation to encode the dependence of the basis on the
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corresponding cell C ). Writing P=PIPI$ where PI # 6N(I ) and PI$ # 6N(I$),
I$ :=[1, ..., d ]"I, it follows that there exist coefficients *C(&), & # G(C ), such
that

(4.10) PI= :
& # G(C )

*C(&) PC, & .

From (4.9) and (4.10) we derive that

P= :
# # Lj "0j

2& jd�2P(#) ,#+ :
# # 0j

2& jd�2 P(#) ,#

= :
# # Lj "0j

(P, 8� #) Rd 8#+2& jd�2 :
C # Cj

:
# # C

PI (#) PI$(#) ,#

= :
# # Lj "0j

(P, 8� #) Rd 8#+2& jd�2 :
C # Cj

:
# # C

:
& # G(C )

PI$(#) *C(&) PC, &(#) ,# .

Taking into account that PI$(#)=: PI$, C is constant for all # # C, and that
for every & # G(C ), 2& jd�2PI$, C*C(&)=(P, 8� &)0 we get that

P= :
# # Lj "0j

(P, 8� #) Rd 8#+2& jd�2 :
C # Cj

:
& # G(C )

PI$, C*C(&) 8&

= :
# # Lj "0j

(P, 8� #) Rd 8#+ :
# # Gj

(P, 8� #) 0 8#

= :
# # L0j

(P, 8� #) Rd 8#

=Ej P. K

For the proof of Theorem 4.5 we intend to establish conditions
(B1)�(B3) of Section 2. Condition (B2) follows from the nestedness of the
multiresolution analysis Vj (0), j # N. As far as (B3) is concerned, we recall
that for each # # Gj , 8#=�& # C P#(&) ,& , where |P#(&)|, & # C, are bounded
by an absolute constant. Using that

&2r
h(,&( } ))&Lp

=2 jd�2 &2r
2 jh(,(2 j } ))&Lp

,

it easily follows that

(4.11) |r(,& , t)p=2 jd�22& jd�p|r(,, 2 jt)p�const 2 jd (1�2&1�p) min(1, (2 jt)r).
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Therefore, we have

|r(8# , t)p�const 2 jd (1�2&1�p) min(1, (2 jt)r),

which is condition (B3).
It remains to prove property (B1). For any cube Q/Rd, we let *(Q )

denote the set of # # Lj , such that ,# is not identically zero on Q while by
4(Q ), we denote the family of all # # Gj such that 8# does not vanish iden-
tically on Q.

Since different quasi-norms on finite-dimensional spaces are equivalent,
the local linear independence of the shifts of , implies that for any dyadic
cube Q of side length 2& j and any sequence of complex numbers
b :=(b(#))# # *(Q )

(4.12) &b&lp(*(Q))r2 jd (1�p&1�2) " :
# # *(Q )

b(#) ,#"Lp(Q)

,

for some constants independent of Q and j # N.
We now fix # # G(C ), C # Cj , j # N, and we consider the basis functions

8#= :
& # C

P#(&) ,&

with P# the Lagrange polynomials defined in (3.8). We note that P#(#)=1
while |P#(&)|�const, & # C, for some constant depending only on ,. From
(P1) we know that for each & # Gj , ,& does not vanish identically on the
dyadic cube Q& with sidelength 2& j and lower left corner at &. Moreover,
all the Q&, & # Gj , are contained in 0. The linear independence of the shifts
of , guarantees that # # 4(Q#), i.e., that 8# does not vanish identically on
Q#. It follows from (4.12) that

(4.13) const 2 jd (1�2&1�p)�&8#& Lp (Q#)�&8# &Lp(Rd )�const 2 jd (1�2&1�p),

where we have used the fact that each cell has a number of lattice points
which is bounded independently of j and the cell (see [2, Theorem 2.18]).

Lemma 4.14. Let + # Gj and Q+, 4(Q+) be as described above. If
0< p�� then for any sequence (b(#))# # 4(Q+) , we have

(4.15) " :
# # 4(Q+)

b(#) 8#"Lp(Q+)

�const 2 jd (1�2&1�p) |b(+)|.
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Proof. We fix an arbitrary + # Gj . It follows from the definitions that on
Q+ we have

:
# # 4(Q+)

b(#) 8#= :
C # Cj

:
# # G(C ) & 4(Q+)

b(#) 8#

= :
C # Cj

:
# # G(C ) & 4(Q+)

b(#) :
& # C

P#(&) ,&

= :
C # Cj

:
& # C \ :

# # G(C ) & 4(Q+)

b(#) P#(&)+ ,&

= :
C # Cj

:
& # C

c(&) ,&= :
& # 0j

c(&) ,& ,

where

(4.16) c(&) := :
# # G(C) & 4(Q+)

b(#) P# (&), & # 0j .

Therefore, we have that

(4.17) �
# # 4(Q+)

b(#) 8#= :
& # *(Q+)

c(&) ,& , on Q +.

Finally, taking the Lp norm of (4.17) over Q+ and using (4.12), we get

" :
# # 4(Q+)

b(#) 8#" Lp(Q+)

�const 2 jd (1�2&1�p) &c(&)&lp(*(Q+))

�const 2 jd (1�2&1�p) |c(+)|.

The result now follows because c(+)=b(+). K

We are ready to prove the stability of the basis [8# : # # Gj].

Theorem 4.18. For each 0< p��, the basis [8# : # # Gj] is uniformly
Lp-stable; i.e., there exist positive constants independent of j # N such that for
any sequence b :=(b(#))# # Gj

(4.19) &blp(Gj )r2 jd (1�p&1�2) " �
# # Gj

b(#) 8#"Lp(0)

.

Proof. Let g # Vj (0), say g=�# # Gj
b(#) 8# . To establish half of (4.19)

we note that by the previous lemma
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|
0

| g| p� :
+ # Gj

|
Q+ } :

# # 4(Q+)

b(#) 8# }
p

�const 2 jdp(1�2&1�p) :
+ # Gj

|b(+)| p

=const 2 jdp(1�2&1�p) &b&p
lp(Gj ) .

For the other inequality, we note that for each x # 0 the number of 8#

which are not zero at x is bounded inependently of x. Therefore,

| g(x)| p�const :
# # Gj

|b(#)| p |8#(x)| p.

The proof concludes by integrating the last inequality over 0 and using
(4.13). K
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